bm11222宝马娱乐app·Welcome

bm11222宝马娱乐app

外延工艺的研究

2016-10-24

摘要

   本文主要讲述了外延在生产中的作用,以及它的分类。外延产品应用于4个方面,CMOS互补金属氧化物半导体支持了要求小器件尺寸的前沿工艺。CMOS产品是外延片的最大应用领域,并被IC制造商用于不可恢复器件工艺,包括微处理器和逻辑芯片以及存储器应用方面的闪速存储器和DRAM(动态随机存取存储器)。分立半导体用于制造要求具有精密Si特性的元件。奇异exotic)半导体类包含一些特种产品,它们要用非Si材料,其中许多要用化合物半导体材料并入外延层中。掩埋层半导体利用双极晶体管元件内重掺杂区进行物理隔离,这也是在外延加工中沉积的。

     本文仅介绍广泛应用于半导体集成电路生产中衬底为硅材料的硅(Si)和锗硅(SiGe)外延工艺。

关键词

外延工艺;半导体;集成电路;芯片

 

第一章  引言

外延片指的是在衬底上生长出的半导体薄膜,薄膜主要由P型,量子阱,N型三个部分构成。现在主流的外延材料是氮化镓(GaN),衬底材料主要有蓝宝石,硅,碳化硅三种,量子阱一般为5个,通常用的生产工艺为金属有机物气相外延(MOCVD)。这是LED产业的核心部分,需要较高的技术以及较大的资金投入(一台MOCVD一般要好几千万) 外延产品

外延产品应用于4个方面,CMOS互补金属氧化物半导体支持了要求小器件尺寸的前沿工艺。CMOS产品是外延片的最大应用领域,并被IC制造商用于不可恢复器件工艺,包括微处理器和逻辑芯片以及存储器应用方面的闪速存储器和DRAM(动态随机存取存储器)。分立半导体用于制造要求具有精密Si特性的元件。奇异exotic)半导体类包含一些特种产品,它们要用非Si材料,其中许多要用化合物半导体材料并入外延层中。掩埋层半导体利用双极晶体管元件内重掺杂区进行物理隔离,这也是在外延加工中沉积的。

上世纪90年代中期,CMOS外延片用量增加的趋势已经出现。19971998年间,半导体滑坡IC公司按器件工艺蓝图(最小线宽缩小速率)更好利用Si表面现实状态。无线和因特网应用的急剧增长,推动200mm300mm晶片工艺向0.18μm及更小尺寸方面发展,其中许多(器件)并入了复杂的单芯片/一个芯片上的系统。为达到所需器件性能和成本率目标,外延片优于抛光片,因为外延片的缺陷密度低、吸杂性能好,电学性能(如锁存效应)也好,且易于制造。外延片让器件制造商很自然地由200mm晶片过渡到300mm晶片而不必改变设计从而节省了时间和投资。

虽然过去两年IC市场稳步增长,但晶片制造商生产能力未跟上,晶片显得供不应求。下一代200 mm300 mmPW要求采用新的生长工艺,而这会大大降低成品率、减少产量。IC和器件工艺发展(最小线宽减小,缺陷密度、吸杂及晶体原生颗粒,COP等问题)与现实的低成本晶片的缺乏不相一致,这样,是选择抛光片还是外延片就提到日程上来了。代替抛光片的办法包括经H2Ar气氛中退火的晶片,在成本、制造重复性和产品性能方面,这两种办法是有效的。外延片需要大批量晶体进行加工,这可使晶片制造商扩大现行衬底生产能力而很少甚至不需要添加另外的设备。(东芝陶瓷信越半导体、MEMC电子材料公司,瓦克Siltronic公司等)晶片制造商已提出若干新的外延工艺以解决COP和吸杂问题,同时要努力降低成本和提高产量。

 

第二章 外延工艺概念

2.1 什么是外延

外延(epitaxy)是在单晶衬底上生长一层单晶膜的技术。新生单晶层按衬底晶相延伸生长,并称此为外延层。长了外延层的衬底称为外延片。

外延时,通入含有一定硅源的氢气流,并流经被高频感应加热的硅片表面,当条件适当时便会在其上外延成膜。

2.2 外延的分类

气相外延;液相外延;固相外延;分子束外延

2.2.1 气相外延在气相状态下,将半导体材料淀积在单晶片上,使它沿着单晶片的结晶轴方向生长出一层厚度和电阻率合乎要求的单晶层,这一工艺称为气相外延。

其特点有(1)外延生长温度高,生长时间长,因而可以制造较厚的外延层;(2)在外延过程中可以任意改变杂质的浓度和导电类型。工业生产常用的气相外延工艺有:四氯化硅(锗)外延,硅(锗)烷外延、三氯氢硅二氯二氢硅等(二氯二氢硅具有淀积温度低,沉积速度快,淀积成膜均匀等优点)外延等。

2.2.2 液相外延液相外延【liquid phase epitaxy】 由溶液中析出固相物质并沉积在衬底上生成单晶薄层的方法。液相外延由尼尔松于1963年发明,成为化合物半导体单晶薄层的主要生长方法,被广泛的用于电子器件的生产上。薄层材料和衬底材料相同的称为同质外延,反之称为异质外延。液相外延可分为倾斜法、垂直法和滑舟法三种,其中倾斜法是在生长开始前,使石英管内的石英容器向某一方向倾斜,并将溶液和衬底分别放在容器内的两端;垂直法是在生长开始前,将溶液放在石墨坩锅中,而将衬底放在位于溶液上方的衬底架上;滑舟法是指外延生长过程在具有多个溶液槽的滑动石墨舟内进行。在外延生长过程中,可以通过四种方法进行溶液冷却:平衡法、突冷法、过冷法和两相法。

它具有如下的优点:1)生长设备比较简单,;2)有较高的生长速率;3)掺杂剂选择范围广;4)晶体完整性好,外延层位错密度较衬底低;5)晶体纯度高,生长系统中没有剧毒和强腐蚀性的原料及产物,操作安全、简便等。

2.2.3 固相外延利用固态相变原理,采用常规设备和真空保护气氛两步热处理方法,在硅单晶衬底上形成大面积连续、均匀的二硅化镍单晶薄膜.应用电子通道分析技术和电子衍射技术,研究二硅化镍单晶薄膜晶格完整性,指出上述形成NiSi_2的方法相对通常仅用真空或保护气氛热处理的方法而言,兼具高效率和高晶格完整性的优点

2.2.4 分子束外延分子束外延的英文缩写为MBE,这是一种在晶体基片上生长高质量的晶体薄膜的新技术。在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地在基片上形成薄膜。该技术的优点是:使用的衬底温度低,膜层生长速率慢,束流强度易于精确控制,膜层组分和掺杂浓度可随源的变化而迅速调整。用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子阱微结构材料。

2.3 外延片的应用

外延产品应用于4个方面,CMOS互补金属氧化物半导体支持了要求小器件尺寸的前沿工艺。CMOS产品是外延片的最大应用领域,并被IC制造商用于不可恢复器件工艺,包括微处理器和逻辑芯片以及存储器应用方面的闪速存储器和DRAM(动态随机存取存储器)。分立半导体用于制造要求具有精密Si特性的元件。奇异exotic)半导体类包含一些特种产品,它们要用非Si材料,其中许多要用化合物半导体材料并入外延层中。掩埋层半导体利用双极晶体管元件内重掺杂区进行物理隔离,这也是在外延加工中沉积的。


第三章  外延片的制备

   芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、构装工序(Packaging)、测试工序(Initial Test and Final Test)等几个步骤。其中晶圆处理工序和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段工序。
3.1 晶圆处理工序:

本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。
3.2 晶圆针测工序:

经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。
3.3 构装工序:

就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。  

第四章 外延片质量测试

   4.1 LED外延片质量辨别方法

   衬底材料是半导体照明产业技术发展的基石。不同的衬底材料,需要不同的外延生长技术、芯片加工技术和器件封装技术,衬底材料决定了半导体照明技术的发展路线。衬底材料的选择主要取决于以下九个方面:     

  [1]结构特性好,外延材料与衬底的晶体结构相同或相近、晶格常数失配度小、结晶性能好、缺陷密度小;      

[2]界面特性好,有利于外延材料成核且黏附性强;      

[3]化学稳定性好,在外延生长的温度和气氛中不容易分解和腐蚀;      

[4]热学性能好,包括导热性好和热失配度小;      

[5]导电性好,能制成上下结构;      

[6]光学性能好,制作的器件所发出的光被衬底吸收小;      

[7]机械性能好,器件容易加工,包括减薄、抛光和切割等;      

[8]价格低廉;      

[9]大尺寸,一般要求直径不小于2英吋。

衬底的选择要同时满足以上九个方面是非常困难的。所以,目前只能通过外延生长技术的变更和器件加工工艺的调整来适应不同衬底上的半导体发光器件的研发和生产。用于氮化镓研究的衬底材料比较多,但是能用于生产的衬底目前只有二种,即蓝宝石Al2O3和碳化硅SiC衬底

 

 

4.2 CVD质量检测

1. 膜厚


比色法薄膜颜色表

 

2折射率


3.
台阶覆盖率

 

           椭偏仪测试示意图

 

 

4. 均匀性


硅片中测试点的选取

 

 

 

第五章 外延的发展趋势

外延生长技术发展于50年代末60年代初。当时,为了制造高频大功率器件,需要减小集电极串联电阻,又要求材料能耐高压和大电流,因此需要在低阻值衬底上生长一层薄的高阻外延层。用气相、液相或分子束等方法在衬底上生长单晶材料的工艺。在衬底上生长组分与衬底材料相同的单晶材料,称同质外延;在衬底上生长与衬底组分不同的单晶材料,称异质外延。

信息技术的发展就是微电子技术的发展,而外延技术是微电子技术的一个分支,因此,信息技术的发展推动了外延技术的不断创新与发展。他们是相辅相成的一个整体。

随着科技的不断发展与前进,外延技术也得到了更大的发展空间,如今正在向亚微米、深亚微米的技术上研究与突破。

所以说,外延技术的发展前景还是非常可观的。我们有信心相信在不久的未来,外延技术也能带动微电子产业以至于信息产业的革命。


上一页半导体基础知识
下一页半导体制造资料

版权所有:bm11222宝马娱乐app   备案号:浙ICP备16007868号-2

 
在线交谈
在线交谈